

700MHz-2700MHz, 50W, 28V RF Power LDMOS FETs

Description

The ITCH24050A4 is a 50-watt , internally matched LDMOS FET, designed for cellular base station and ISM applications with frequencies from 700MHz to 2700 MHz $_{\circ}$

Its 4-lead configuration enables the flexibility to design the power amplifier in form of single ended, push pull, 90 degree hybrid, for either class AB/C or Doherty applications.

It is also featured by the application to share the same general purpose PCB layout for any narrow band application within 0.7-2.7GHz only with modification of bill of materials to fit specific narrow band use.

• Typical Performance of 920-960MHz (On Innogration fixture with device soldered):

 V_{DD} = 28 Volts, I_{DQ} = 320 mA , Pulse Width =10us, Duty Cycle =12%.

Freq(MHz)	P1(dBm)	P1(W)	Gain@P1(dB)	P3(dBm)	P3(W)	Eff(%)@P3
920	49.47	88.5	19.7	49.97	99.3	64.36
940	49.09	81	19.6	49.80	95.5	65.62
960	48.52	67.9	19.3	49.52	89.5	64.26

• Typical Performance of 2400-2500MHz (On Innogration fixture with device soldered):

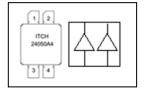
 V_{DD} = 28 Volts, I_{DQ} = 300 mA , Pulse Width =10us, Duty Cycle =12%.

Freq(MHz)	P1(dBm)	P1(W)	Gain@P1(dB)	P3(dBm)	P3(W)	Eff(%)@P3
2400	48.75	75	15.4	49.53	89.7	53.65
2450	48.15	65.3	15.7	49.05	80.3	54.52
2500	47.66	58.3	15.6	48.61	72.6	53.28

Features

- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Excellent thermal stability, low HCI drift

- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- Pb-free, RoHS-compliant


Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	+65	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T,	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Rejc	0.9	°C/W

ITCH24050A4

Document Number: ITCH24050A4 Preliminary Datasheet V2.0

T_C= 85°C, T_J=200°C, DC test

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)

DC Characteristics (per Section)

Conditions	Symbol	Min	Тур	Max	Unit
V _{GS} =0V; I _{DS} =1mA	V _{DSS}	65			V
V _{DS} = 28 V, V _{GS} = 0 V	1			1	μΑ
	DSS			ı	μΑ
$V_{GS} = 9 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}			1	μΑ
$V_{DS} = 28V, I_{D} = 300 \mu A$	$V_{\text{GS}}(\text{th})$		1.75		٧
V _{DS} = 28 V, I _{DS} = 300 mA, Measured in Functional Test	$V_{GS(Q)}$		2.7		V
	V_{GS} =0V; I_{DS} =1mA V_{DS} = 28 V, V_{GS} = 0 V V_{GS} = 9 V, V_{DS} = 0 V V_{DS} = 28V, I_{D} = 300 μ A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$V_{GS} = 0V; \ I_{DS} = 1mA \qquad V_{DS} \qquad 65$ $V_{DS} = 28 \ V, \ V_{GS} = 0 \ V \qquad I_{DSS}$ $V_{GS} = 9 \ V, \ V_{DS} = 0 \ V \qquad I_{GSS}$ $V_{DS} = 28 \ V, \ I_{D} = 300 \ \mu A \qquad V_{GS}(th) \qquad 1.75$ $V_{DS} = 28 \ V, \ I_{DS} = 300 \ mA, \qquad V_{GS(Q)} \qquad 2.7$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Pulse CW Signal performance of per Section (In Innogration Test Fixture, 50 ohm system): $V_{DD} = 28 \text{ Vdc}$, $I_{DQ} = 400 \text{ mA}$, f = 920-960 MHz, Pulse CW, Pulse Width=12 us, Duty cycle=10%.

Characteristic	Symbol	Min	Тур	Max	Unit
Linear Gain	Gp		20		dB
Drain Efficiency@P1dB	$\eta_{\scriptscriptstyle D}$		60		%
1dB Compression Point	P _{-1dB}		60		W
Input Return Loss	IRL		-7		dB

Load Mismatch of per Section (On Innogration Test Fixture, 50 ohm system): $V_{DD} = 28 \text{ Vdc}$, $I_{DQ} = 300 \text{ mA}$, f = 960 MHz

VSWR 10:1 at 50W Pulsed CW Output Power No Device Degradation

Table 5. Single Section Load-Pull Performance:

 V_{DD} = 28 Vdc, I_{DQ} = 100 mA, Pulsed CW, Pulse Width=200 us, Duty cycle=20% .

ITCH24050A4 2400MHz	Freq (MHz)	VDD (V)	ldq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	2400	28	100	10.9-j*23.1	3.2-j*4.5	47.13	13.89	64.15
MXE	2400	28	100	10.9-j*23.1	2.0-j*3.0	45.70	15.67	70.53
Trade Off	2400	28	100	10.9-j*23.1	2.7-j*3.9	46.93	14.54	66.19
ITCH24050A4 2450MHz	Freq (MHz)	VDD (V)	ldq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	2450	28	100	13.6-j*25.0	2.9-j*4.8	47.09	14.04	64.35
MXE	2450	28	100	13.6-j*25.0	1.8-j*3.4	45.60	15.88	70.32
Trade Off	2450	28	100	13.6-j*25.0	2.5-j*4.3	46.89	14.59	66.10
ITCH24050A4 2500MHz	Freq (MHz)	VDD (V)	ldq (mA)	Zsource (ohms)	Zload (ohms)	Pout (dBm)	Gain (dB)	Eff (%)
MXP	2500	28	100	18.1-j*28.1	3.0-j*4.9	47.05	14.12	65.28
MXE	2500	28	100	18.1-j*28.1	1.8-j*3.7	45.52	15.96	70.25
Trade Off	2500	28	100	18.1-j*28.1	2.5-j*4.5	46.85	14.74	67.01

Figure 1: Gain and Efficiency as function of output power

Test signal: pulse width: 100us,duty cycle:10%, Vds=28V, Idq=300mA

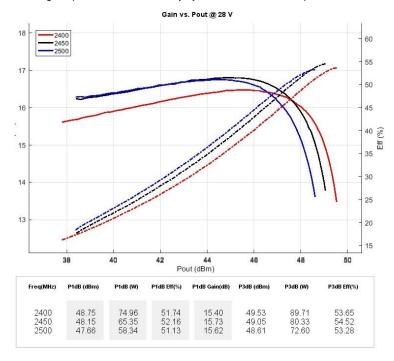


Figure 2: WCDMA performance at 2.4-2.5GHz

Test signal: 1 Carrier WCDMA (PAR=10.5dB @ 0.01% probability), Vds=28V, Idq=300mA

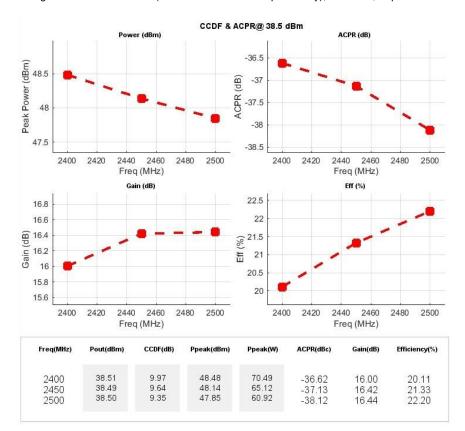
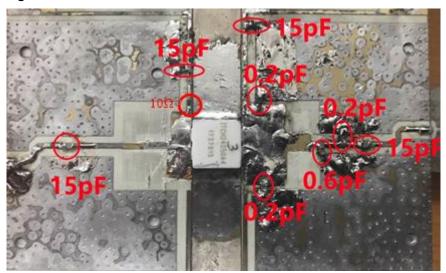
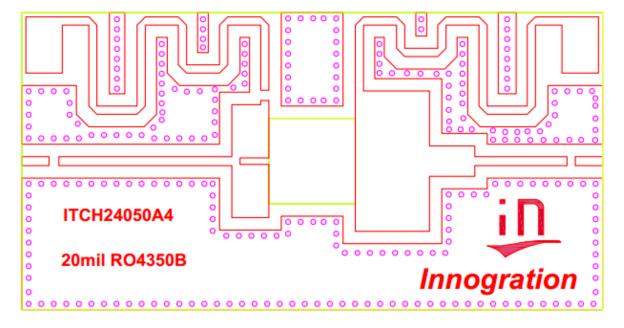
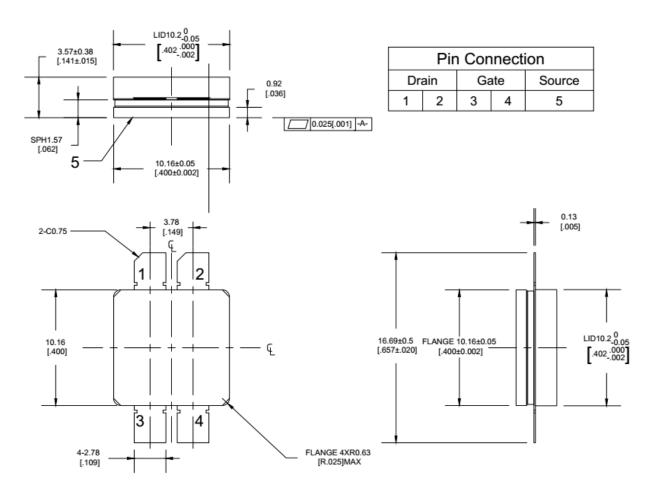


Figure 3: Photo of fixture and bill of materials for 2.4-2.5GHz


Figure 4: layout of the general purpose PCB (applicable to any narrow band within 0.7-2.7GHz)

Package Outline

Earless Flanged ceramic package; 2 leads

Unit: MM [Inches]

Unless specified tolerances: ±0.125MM

Document Number: ITCH24050A4 Preliminary Datasheet V2.0

Revision history

Table 6. Document revision history

Date	Revision	Datasheet Status
2017/8/31	Rev 1.0	Preliminary Datasheet
2017/9/21	Rev 2.0	Add test data of 900MHz, 2400MHz

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.